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Efforts to activate carbon dioxide by transition-metal complexes' 
have centered primarily on its organometallic chemistry2 and 
transition-metal-mediated electrochemistry3 and, to a limited 
extent, on metal-mediated photochemical reduction.4 A common 
feature of coordinated CO2 reactivity emerging from studies of 
its interaction with electron-rich metal complexes is O-atom 
transfer, most commonly manifested as reductive disproportion­
ation (eq I1 Sub = CO2).5 In a few instances O-transfer to a 

Scheme I 

LnM + CO2 -* LnM(CO2) (a) 

LnM(CO2) — LnM=O or LnM(CO3) + CO (b) 

LnM=O or LnM(CO3) + Sub — 
LnM or LnM(CO2) + SubO (c) 

CO2 + Sub (+2e") - CO + SubO2" (1) 

substrate other than CO2 has been observed such as to oxophilic 
metals,6 isocyanides,7 or phosphines,8 the latter catalytically.' In 
an effort to expand the scope of these reactions and to overcome 
their thermodynamic limitations, we are seeking complexes which 
could mediate CO2 splitting photochemically, as in Scheme I. It 
appeared that the molybdenocene system (LnM = Cp2Mo) might 
be a suitable one for this purpose since not only are several an­
ticipated intermediates in the putative Scheme I known, i.e., 
Cp2Mo,10 Cp2MoO," Cp2MoCO,12 and CpMo(CO2),

13 but 
CpMoL12 complexes in general appear to be photochemically 
active toward M-L scission.14 Resulting from our initial in-
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Figure 1. Perspective view of 2. Thermal ellipsoids are shown at the 50% 
level, and hydrogen atoms are plotted as spheres of 0.05 A radius: 
Mo-O(I ) , 2.098 (3); Mo-0 (2 ) , 2.095 (3); Mo-Cp1 , 1.977 (5); Mo-Cp2 , 
1.986 (5); C ( I ) - O ( I ) , 1.337 (6); C ( l ) - 0 ( 2 ) , 1.322 (6); C ( l ) - 0 ( 3 ) , 
1.216(6); 0 ( l ) - M o - 0 ( 2 ) , 62.6 (1); M o - O ( I ) - C ( I ) , 93.4 (3); Mo-O-
(2)-C( 1), 93.9 (3); 0 ( l ) - C ( l ) - 0 ( 2 ) , 110.1 (4); 0 ( I ) -C(I ) - 0 ( 3 ) , 124.6 
(5); 0 ( 2 ) - C ( l ) - 0 ( 3 ) , 125.4 (4); Cp 1 -Mo-Cp 2 , 133.9 (2). 

TlM Or) 
Figure 2. Infrared absorbance changes during the reaction of Cp2Mo-
(CO2) (1) with CO2 (THF, -10 0C) showing the disappearance of 1 (at 
1740 cm"')—(O) photolyzed, (•) dark—and the appearance of 
Cp2Mo(CO3) (at 1630 cm"1)—(D.) photolyzed, (•) dark. 

vestigations of the molybdenocene-C02 system, we provide here 
the first example of photoinduced disproportionation of coordi­
nated carbon dioxide. 

Irradiation (>330 nm)15 of a 0.05 M THF solution of Cp2MoH2 
at -10 0C under 1 atm of CO2 with continuous GC, IR, and 1H 
NMR monitoring initially revealed the disappearance of the 
starting complex (1-3 h) and the formation of [(C5H5)(C5H4)-
Mo]2,

16 Cp2Mo(>/2-C02)
13 (1: IR 1740 cm"1; 1H NMR « 5.07), 

and H2 ." Continued irradiation (3-30 h) resulted in the dis­
appearance of 1 and the appearance of Cp2Mo(CO)12 (IR 1910 
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inorganic abstract, no. 27. 
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cm"1, 4.48 ppm), free CO,18 and a new complex 2 as a dark red 
precipitate with IR bands at 1670 and 1635 cm"1 (1620,1590 cm"1 

13CO2) and a single Cp resonance at 5.46 ppm. 

Cp2MoH2 + CO2 -^ Cp2Mo(7j2-C02) + [(C5H5)(C5H4)Mo]2 + H2 
THF 

1 
hv I 
CO2 I THF 

1 (2) 
2 + Cp2Mo(CO) + CO 

The fact that isolated complex 2 released CO2 when treated 
with aqueous HCl and that 2 was also produced from the reactions 
of NaHCO3 or Na2CO3 with Cp2MoCl2 (EtOH/H2O/20 0C) led 
us to suspect 2 to be a carbonate complex. Ultimately, single 
crystals of 2 were obtained from THF/ethanol, and its structure 
was established by X-ray diffraction." Figure 1 shows 2 to be 
(JJ5-C5H5)2MO(T)2-C03). The structure of 2 features a planar 
molybdenum-carbonate fragment which approximately bisects 
the angle defined by the two Cp-Mo vectors (133.9 (2)°). 
Symmetrical bidentate coordination of the carbonate ligand is 
reflected in the equal Mo-O lengths. Within the carbonate unit 
essentially localized bonding is indicated by the long C(I)-O(I) 
and C(l)-0(2) bonds (1.337 (6), 1.322 (6) A) and short C-
(l)-0(3) (1.216 (6) A).20"22 

The formation of carbonate complex 2 during photolysis nat­
urally raises the question of whether the 1 —• 2 transformation 
is itself photoinduced. Indeed, the following results clearly provide 
an affirmative response on this point: (l) the rate of carbonate 
(2) formation from Cp2MoH2 during irradiation is roughly the 
same at both -10 and +40 0C (determined by isolation), and (2) 
at -10 0C transformation of CO2 complex 1 to 2 occurs appre­
ciably only during irradiation. Figure 2 shows the dramatically 
accelerated disappearance of CO2 complex I23 (and appearance 
of carbonate 218) when irradiated compared to a dark control, 
monitored by IR. The quantum yield for the 1 -» 2 conversion 
at 366 nm was found to be 0.04 (±0.02),24 almost as efficient as 
the photoexpulsion of H2 from Cp2MoH2 (ca. 0.1).14a 

Although elucidation of the 1 —• 2 mechanism must await the 
results of experiments in progress, free Cp2MoO (Scheme I) 
apparently is not an intermediate since its reaction with CO2 (A 
or hv) to give 2 was found to be much slower (t1/2 > 100 h) than 
the 1 —• 2 photoconversion.25 

(18) Cp2Mo(CO) photodissociates CO under these conditions14 so that 1H 
NMR monitoring initially shows parallel growth of 2 and Cp2Mo(CO) fol­
lowed by gradual decline of the latter. 
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dimensions and intensities of 1627 reflections were measured at -135 (2) 0C 
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CO2 and/or radiative decay to ground state. 

These results provide the first solution phase example of pho­
tochemical activation of a metal-carbon dioxide complex.26 

Studies to further characterize the photoreactivity of 1 and to 
expand the scope of transition-metal-medated photochemical 
oxidations with carbon dioxide are underway. 
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(25) Furthermore, no Cp2MoO was detected by IR or 1H NMR during 
the photolysis of 1. 
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The tandem flowing afterglow selected ion flow tube (FA-SIFT) 
is a versatile instrument which is especially suited to the inves­
tigation of the gas-phase chemistry of unusual ions.1 We have 
used this instrument to generate the silaacetylide anion, HO^Si',11 

and wish to report some chemistry of this interesting ion, par­
ticularly reactions which support the structure given over that of 
its tautomer. Ions of this type are of interest because of recent 
studies on the preparation of the neutral silicon-nitrogen triple 
bond2 and the silicon-silicon triple bond synthon.3 Our work 
represents the first report on the parent compound, H2C=Si:.4,11 

A host of other unsaturated silicon anions can also be studied by 
this technique, and we report preliminary results on the chemistry 
of an ion of mass 43 to which we tentatively assign the structure 
H2Si=CH". 

In the FA-SIFT a mixture of anions of different masses can 
be produced by direct electron impact at 1 Torr helium pressure 
on silicon-containing neutrals in the first flow tube. Under these 
conditions, secondary reactions of ions with neutral precursors 
give rise to a rich array of ionic products. For example, electron 
impact on methylsilane produces over 20 anions corresponding 
in mass to Si", SiC", Si2

-, and Si2C
-, together with many of their 

hydrogenated analogues. At the end of this flow tube the ions 
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